تخمین کریپ کمپلینس مخلوط های آسفالتی با استفاده از شبکه های عصبی مصنوعی
Authors
Abstract:
یکی از آزمایشهای اساسی در فرایند طراحی روسازیهای انعطافپذیر به روش مکانیستیک- تجربی در آشتو 2002، آزمایش کریپ کمپلینس است. در این تحقیق مدلی جدید برای تخمین کریپ کمپلینس مخلوطهای آسفالتی با استفاده از شبکههای عصبی مصنوعی پرسپترون چند لایه، با تکنیک آموزش لونبرگ- مارکوات، با توان تعمیم پذیریR=0.949 ، با موفقیت ارائه شده است. این مدل 14 ورودی شامل درصدهای عبوری انتخابی از منحنی دانهبندی و نیز درصد قیر، درجه نفوذ قیر در 77 و 115 درجه فارنهایت، اندیس نفوذ قیر و دمای آزمایش دارد. خروجیهای مدل 8 عدد شامل کریپ کمپلینس مخلوط آسفالتی در زمانهای 100، 50، 20، 10، 5، 2و 1 ثانیه و نیز ضریب پواسون است. دادههای مورد نیاز، به کمک تهیه برنامه های متعدد به زبان SQL، در محیط ACCESS 2000، از LTPP Database 2007 استخراج شده اند که شامل داده های 975 آزمایش کریپ کمپلینس و نیز 975 سری دادههای آزمایشهای مصالح سنگی مربوطه و نیز 975 سری داده های آزمایشهای قیر نظیر آنها می باشد
similar resources
تخمین انرژی شکست بتن با استفاده از شبکه عصبی مصنوعی
بتن یکی از رایجترین مصالح صنعتی و ساختمانی است که به دلیل اقتصادی بودن اهمیت روز افزونی پیدا میکند. در سالهای اخیر با بهرهگیری از روشهای مختلف آزمایشگاهی، پارامترهای شکست مواد سیمانی مانند بتن مورد بررسی قرار گرفته است؛ نقش این پارامترها در طراحی سازههای سطحی و زیرسطحی از اهمیت ویژهای برخوردار است. در این مقاله مدل شکست بر اساس شبکه عصبی برای تخمین پارامترشکست بتن GF(انرژی مخصوص شکس...
full textتخمین سختی برشی شکست ( ) با استفاده از شبکه عصبی مصنوعی
در سالهای اخیر با بهرهگیری از روشهای مختلف آزمایشگاهی، چگونگی مد برشی شکست با استفاده از نمونههای سنگی مورد بررسی قرار گرفته است. اغلب گسیختگیهای رخ داده در طبیعت در اثر عملکرد نیروهای کششی و برشی در توده سنگ میباشد. تعیین دقیق سختی برشی شکست برای درک و تحلیل رفتار گسیختگیها در حفریات سطحی و زیرزمینی از اهمیت ویژهای برخوردار میباشد. بررسی جامع دستاوردهای علمیدر خصوص تعیین سختی برش...
full textتخمین نسبت باربری کالیفرنیا خاک های مردابی بهسازی شده با استفاده از شبکه عصبی مصنوعی
امروزه استفاده از روش اختلاط عمیق برای بهبود روسازی جاده ها گسترش یافته است. یکی از مهمترین اهداف این روش ، افزایش ضریب باربری کالیفرنیا و کاهش نشست روسازی می باشد. در سال های اخیر، مدلسازی به وسیله هوش محاسباتی، جایگاه ویژه ای در مهندسی عمران پیدا کرده است وتخمین رفتار و فرایند مقاوم سازی که با پیچیدگی های فراوانی روبه رو بوده، تا حدودی به کمک این روش ها میسر شده است. هدف اصلی این تحقیق، ساخت ...
full textتخمین ضریب تبدیل شلتوک با استفاده از شبکه های عصبی مصنوعی در خشک کردن بستر سیال
The objective of this research was to predict head rice yield (HRY) in fluidized bed dryer using artificial neural network approaches. Several parameters considered here as input variables for artificial neural network affect operation of fluidized bed dryers. These variables include: air relative humidity, air temperature, inlet air velocity, bed depth, initial moisture content, final moisture...
full textتخمین ضریب تبدیل شلتوک با استفاده از شبکه های عصبی مصنوعی در خشک کردن بستر سیال
The objective of this research was to predict head rice yield (HRY) in fluidized bed dryer using artificial neural network approaches. Several parameters considered here as input variables for artificial neural network affect operation of fluidized bed dryers. These variables include: air relative humidity, air temperature, inlet air velocity, bed depth, initial moisture content, final moisture...
full textکاربرد شبکه های عصبی مصنوعی(ANN) در تخمین محتوای آبی گیاهان(VWC) با استفاده از داده های فراطیفی
با گسترش سنجش از دور فراطیفی امکان بهره گیری از گروه جدیدی از شاخص های طیفی و مدلهای آماری، برای تخمین پارامترهای بیو فیزیکی و بیوشیمیایی گیاهان به وجود آمده است. یکی از پارامتر های بیوشیمیایی گیاه، محتوای آبی گیاه (VWC) است که پارامتری مهم در بخش کشاورزی است و میتواند در جهت آبیاری صحیح و ارزیابی شرایط خشکسالی مورد استفاده قرار بگیرد. در این تحقیق با استفاده از شبکه های عصبی مصنوعی و داده ها...
full textMy Resources
Journal title
volume 44 issue 1
pages -
publication date 2010-03-21
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023